# Class 7 Mathematics / Integers / Model Questions

**CBSE Class 7 Mathematics/ Integers is designed for Class 7 Mathematics students. Here you can find out model questions from the chapter Integers.**

**CBSE Class 7 Mathematics/ Integers – Chapter 1/ Model QuestionsTotal: 25 Marks Time: 45 minutesI. Fill in the blanks (1 mark)**

- (-4) x (-3) = ———-
- ———- is the additive identity for integers.
**II. Answer the following (2 marks)** - Find

i) (-25) x 0 x 4

ii) (-1) x (-1) x (-1) - Evaluate:

i) (-20) / (-4)

ii) (-50) / 10 - Write the properties used here:

i) (-3) x 5 = 5 x (-3)

ii) (-4) x [(3) x (-2)] = [(-4) x 3] x (-2)**III. Answer the following (3 marks)** - Verify that (-3) x [2 + (-6)] = (-3) x 2 + (-3) x (-6)
- Find the product using suitable properties

i) 55 x (-35) + (-35) x (-45)

ii) 25 x (-24) x 4 - Fill in the blanks:

i) 25 / —- = -1

ii) (-75) /75 = —–

iii) (-12) / —- = -3 - Find

i) (-10) + (-2)

ii) 22 – (-20)

iii) (-100) – (-100)**IV. Answer the following: (5 marks)** - Use appropriate symbols <,>, =

i) (-3) + (-4) —– (-1) + (-6)

ii) 2 x (-5) —— (-1) x (-4)

iii) 4 – (-6) —– 3 – (-3)

iv) 4 x 0 —– (-1) x (-4)

v) (-1) x (-1) —– (-1) x (-1) x (-1)

**ANSWERS:**

I. Fill in the blanks (1 mark)

- 12
- 0

II. Answer the following (2 marks) - i) 0

ii) -1 - i) 5

ii) -5 - i) Commutative property

ii) Associative property

III. Answer the following (3 marks) - LHS = (-3) x [2 + (-6)] = (-3) x (-4) = 12

RHS = (-3) x 2 + (-3) x (-6) = (-6) + 18 = 12

Here LHS = RHS. So verified. - i) 55 x (-35) + (-35) x (-45) = (-35) [55 + (-45)] = (-35) x 10 = -350

ii) 25 x (-24) x 4 = (25 x 4) (-24) = 100 x (-24) = -240 - i) 25/ (-25) = -1

ii) (-75) /75 = -1

iii) (-12)/4 = -3 - i) (-10) + (-2) = -12

ii) 22 – (-20) = 22 + 20 = 42

iii) (-100) – (-100) = -100 + 100 = 0

IV. Answer the following (5 marks) - i) (-3) + (-4) = -7, (-1) + (-6) = -7

So (-3) + (-4) = (-1) + (-6)

ii) 2 x (-5) = -10, (-1) x (-4) = 4

So 2 x (-5) < (-1) x (-4) iii) 4 – (-6) = 4 + 6 = 10, 3 – (-3) = 3 + 3 = 9 So 4 – (-6) > 3 – (-3)

iv) 4 x 0 = 0, (-1) x (-4) = 4

So 4 x 0 < (-1) x (-4) v) (-1) x (-1) = 1, (-1) x (-1) x (-1) = -1 So (-1) x (-1) > (-1) x (-1) x (-1)